
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Soft-routing Mixture of Experts for Autoregressive Language Model Pre-training

Anonymous Authors1

Abstract

Mixture-of-expert (MoE) models enable scaling
model sizes with little increase of computation.
Recently, fully differentiable MoE architectures
have been proposed to address training difficulties
via end-to-end gradient propagation. Despite
their promising results in computer vision
and text classification tasks, how to pre-train
autoregressive language models (LMs) with such
architectures remains an open question. In this
work, we present SOAP: Soft-Routing Mixture
of Experts for Autoregressive Language Model
Pre-training, a novel approach for efficient pre-
training of MoE LMs. SOAP consists of
two key solutions: (1) We first propose a
segment-level routing strategy, in which the
previous segment is used to route the next
segment in an autoregressive manner; (2) We
pre-train our MoE models by concatenating
similar documents sequentially to make our
segment-level router more effective in expert
specialization. Experimentally, we train soft-
routing MoE models with up to 32 experts
and 30B (1.5B active) parameters, and show
that SOAP leads to significant performance
gains over parameter-matched dense models
on various tasks, including language modeling
(+13.9%), commonsense reasoning (+3.7%),
reading comprehension (+3.3%), closed-book
QA (+1.5%), and text classification (+11.1%).
Further analysis demonstrates that our trained
experts can capture domain-level specialization
without additional supervision.

1. Introduction
Mixture-of-experts (MoE) models route a given input to
a small subset of model parameters (known as experts)

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

for computation, realizing the strong performance of
a large model size while staying with computational
efficiency (Lepikhin et al., 2020; Fedus et al., 2022; Du
et al., 2022; Zoph et al., 2022; Lewis et al., 2021; Zhou et al.,
2022). These models are trained to route given inputs to a
few experts, introducing the complexity of learning a non-
differentiable, discrete decision-learning problem (Shazeer
et al., 2017; Zoph et al., 2022).

Recently, fully differentiable MoE architectures based on
soft-routing have been proposed (Puigcerver et al., 2023;
Muqeeth et al., 2023), showing the promise of training
models via end-to-end back-propagation. While these
models achieve promising results on computer vision and
text classification tasks, it remains challenging to pre-
train autoregressive language models (LMs) with such
architectures. Firstly, soft-routing MoE models introduces
a computationally expensive merging operation (Muqeeth
et al., 2023), making token-level routing infeasible.
Secondly, existing input-level routing strategies make the
routing decision on the entire input sequence, which disrupts
the autoregressive nature intrinsic to decoder-only models.
Moreover, during pre-training, the models that employ input-
level routing are trained to route all documents in the same
training sample together. This practice, coupled with the
random concatenation of irrelevant documents within a
training sample, can potentially leads to a scenario where
experts are not sufficiently specialized.

In this paper, we propose SOAP (Soft-Routing Mixture of
Experts for Autoregressive Language Model Pre-training)
(Figure 1), to train autoregressive LMs with soft-routing
MoE architectures. Our method consists of two key
solutions. (1) We first propose the causal segment routing
strategy. For a given input, we split it into multiple
segments with a fixed length, where each segment is
used to route the next segment in an autoregressive
manner. This segment-level routing strategy maintains the
autoregressive property of the models and also achieves
high computational efficiency by merging experts only
once per segment. (2) We also propose a similarity-based
data batching method, inspired by Shi et al. (2023), which
sequentially concatenates similar documents to construct
training instances. This prevents the models from routing
irrelevant documents together, encouraging experts to learn
the specialization in specific domains or topics.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2024

Merged FFN

Segment 1 ()S × d

Router

FFN 1 FFN 2 FFN 3 FFN 4 FFN 1 FFN 2 FFN 3 FFN 4

Merged FFN

FFN 1 FFN 2 FFN 3 FFN 4

Merged FFN

Stop gradient

Segment 2 ()S × d Segment 3 ()S × d

Input of the MoE layer ()L × d

Output of the MoE layer ()L × d

Router Router

Self-attention layer

Soft-routing MoE layer

doc 1 doc 2 … doc m

Training instance: similar docs

The Fields Medal is a prize
awarded to two, three, …

Self-attention layer

Soft-routing MoE layer

 Huh was awarded the
2022 Fields Medal …

Figure 1: The illustration of the proposed training method SOAP. We adapt the fully differentiable soft-routing MoE architecture (Muqeeth
et al., 2023) that merges multiple FFN networks into one using the routing weights at each MoE layer. SOAP is based on two key
techniques: first, we use the causal segment routing strategy which does not introduce substantial compute overhead while preserving
the autoregressive nature of the model; second, we employ the similarity-based data batching method to construct training samples by
sequentially concatenating similar documents. L: sequence length of training samples; d: embedding dimension of the model; S: length
of the segment.

We evaluate our approach by training different sizes of
language models with 0.3B, 1.5B active parameters and
with up to 32 experts. Our experimental results suggest that
SOAP lead to soft-routing MoE models that significantly
outperform parameter-matched dense baseline models
trained with the same amount of data, achieving significant
performance gains on language modeling (+13.9%),
commonsense reasoning (+3.7%), reading comprehension
(+3.3%), closed-book QA (+1.5%), and text classification
(+11.1%). Furthermore, our analysis reveals that the
experts trained through SOAP are able to capture domain-
level specialization without additional supervision.

2. Preliminaries
2.1. Background: Sparsely-activated MoE

Transformer-based sparse MoE models (Shazeer et al.,
2017; Fedus et al., 2022; Zoph et al., 2022) replace feed-
forward network (FFN) layers with MoE layers. Each
MoE layer consists of E expert FFNs, parameterized as
FFN(·; θ1), . . . ,FFN(·; θE), where FFN : RL×d → RL×d.
Given an input x, a conventional sparse MoE layer computes
the output y by sparsely activating one or more experts in
this layer:

y =
∑
i

ei · FFN(x; θi),

where ei represents the routing weight for the i-th expert
of the input at this MoE layer. The routing weight ei is
typically measured by a routing network or router R, which
takes a hidden representation as input and employs a linear
operation followed by a softmax, ei = Softmax(R(x))i.
For the i-th expert, if the corresponding routing weight

ei = 0, we do not need to compute FFN(x; θi), i.e., the
i-th expert is not activated. In practice, only k experts
with top routing weights are activated at each layer, i.e.,
ei = Top-k(Softmax(R(x)))i.

2.2. Soft-routing MoE

Training sparsely-activated MoE models has been shown
to be difficult (Fedus et al., 2022; Zoph et al., 2022)
Recently, fully differentiable MoE architectures have been
proposed (Muqeeth et al., 2023; Puigcerver et al., 2023),
with the promise of training entire models via end-to-
end gradient back-propagation. Our work focused on the
soft-routing MoE architecture, proposed by Muqeeth et al.
(2023). Instead of activating a limited number of experts
at each layer, we compute a weighted average of all expert
FFNs with routing weights in the parameter space, yielding
a merged FFN. The input x is passed into the merged FFN
to compute the output y:

y = FFN(x;
∑
i

ei · θi). (1)

In soft-routing MoE models, as the input x is only fed
into the merged FFN network, the computational overhead
compared to a dense model comes from computing the
routing weights ei and merging the experts into one FFN.

Applicability to autoregressive model training Here,
we discuss the possibility of applying the existing training
technique to train autoregressive LMs with the soft-
routing MoE architecture (Muqeeth et al., 2023). As
Equation 1 shows, these soft-routing MoE models require
the computation of a weighted average of all expert

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2024

Algorithm 1 Pseudocode of causal segment routing.

B: batch size (number of training instances)
L: length of each training instance
d: hidden dimension
E: number of experts
S: length of each segment
R: routing network (input: hidden rep, output:

routing weights)

input x # x: input tensor (BxLxd)

N = L // S # number of segments in each sample
seg_x = x.view(B*N, S, d) # split x into segments

representation of each segment (BNxE)
repr = mean(seg_x, dim=1)

routing results (not causal) (BNxE)
e = softmax(R(repr), dim=-1)

routing results for the first segment
e_first = e.view(B, N, E)[:, 0]

make causal routing results (shift 1)
e = roll(e, 1) # shift by 1

set routing results of the first segment
e = e.view(B, N, E) # back to the instance view
e[:, 0] = stop_grad(e_first) # assign w/ stop gradient
e = e.view(B*N, E)

MoE FFN forward with expert weights e
seg_y = moe_ffn(seg_x, e) # seg_y: B*N x S x d

back to the instance view
y = seg.y.view(B, L, d)

return y

moe_ffn: compute the merged expert and process the input (equation 1).

parameters with each routing decision made. Although
processing the input in the merged expert leads to
comparable computation costs to using a single expert,
the averaging operation that merges expert parameters may
introduce a substantial computational overhead when the
routing network is run at each position in the sequence.
Muqeeth et al. (2023) approaches this challenge by simply
making a single routing choice for the entire input example.
This strategy enables the training of a text classification
model in downstream tasks (Muqeeth et al., 2023), it does
not apply to the training of autoregressive LMs. First,
the sentence-level routing strategy assumes that the router
network has access to the entire input sentence, even when
computing the loss at the middle positions. This disrupts
the autoregressive nature of trained LMs. Second, during
pre-training, short documents are randomly concatenated to
form a training instance. Making routing decisions based
on the entire input encourages the merged expert to adopt a
“generalist” approach to process all input documents, which
may undermine the specialization of expert FFNs.

3. Our Method: SOAP
In order to train autoregressive language models with a soft-
routing arthicture, we propose SOAP (Soft-Routing Mixture
of Experts for Autoregressive Language Model Pre-training)
(Figure 1), which is based on two key techniques: causal

segment routing and similarity-based data batching.

3.1. Causal Segment Routing

As discussed above, token-level routing leads to a large
computational overhead, while routing based on the entire
input disrupts the autoregressive nature of the model. We
propose the causal segment routing strategy to realize the
computational efficiency of routing while ensuring that
the model’s computations are conditioned on preceding
positions, thus preserving its autoregressive integrity.
Algorithm 1 shows the pseudocode of our routing strategy.
Given a training instance consists of L tokens (e.g., L =
4096), we split the training instance into multiple segments,
each of which contains S (e.g., S = 256) consecutive
tokens. During training, for each segment within an instance
except for the first segment, we compute the mean hidden
representation of the preceding segment and feed this as
input to the routing network for each MoE layer. For the first
segment, the representation of the segment itself is used to
compute the routing weights. However, this may cause the
model to leak information through the router; thus, we apply
a stop-gradient operation on top of the routing results of the
first segment to avoid the model from optimizing based on
potential information leakage. Such segment-level routing
avoids merging FFNs at each position, largely reducing
computational overhead. In Appendix A, we analyze the
computational overhead that the causal segment routing
strategy introduces.

3.2. Similarity-based Data Batching

When training language models on large corpora, irrelevant
documents are randomly concatenated to form a training
instance with a fixed context window length. However, in
segment-level routing strategy, routing irrelevant documents
together may lead to less specialized experts, as it trains the
model to process those documents of various domains with
the same merged FFN. To address this issue, we adapt the
idea of data batching in in-context pre-training (Shi et al.,
2023). Instead of randomly batching irrelevant documents
to form training samples, we measure the similarity between
documents using Contriever (Izacard et al., 2021) and
sequntially concatenate similar documents to construct
training instances. Similar to Shi et al. (2023), we employ
a greedy algorithm to order all documents and construct
training instances (see Appendix B for more details).

3.3. Routing During Downstream Inference

During inference for downstream tasks, we are given a
prompt text and would like to generate the continuations.
We consider two routing strategies during inference. First,
we follow the same schema as our training method. We
split the input prompt into multiple segments with the same

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2024

fixed length as the pre-training and use each segment to
compute the routing weights for the next segment1. During
generation, once the current segment is filled with newly
generated tokens, we perform the routing again and compute
new merged experts. Second, we only make a single
routing choice once based on the entire input prompt. All
generations are based on the merged experts computed upon
the input prompt at the beginning, and the merged experts
are not refreshed during generation. In Appendix E.1, we
show that these two inference routing strategies do not make
substantial differences in the downstream tasks we evaluated.
We then use the prompt-routing strategy by default as it
requires only a one-time routing choice. Note that after the
one-time routing choice, we process the entire input only
on the merged experts, making the generation procedure as
simple and efficient as dense models.

4. Experiments
In this section, we conduct experiments to evaluate our
approach on training autoregressive language models.

4.1. Setup

Models We evaluate our approach by training decoder-
only Transformer models which consists of active
parameters of 0.3B and 1.5B2. For each FFN layer in
the Transformer model, we replace it with MoE layers
with E (E ∈ {8, 16, 32}) experts with exactly the same
architecture. Appendix C shows the configuration of model
architectures as well as the total parameter count. We follow
LLaMA (Touvron et al., 2023a) and use SwiGLU (Shazeer,
2020) as the activation function in FFNs. We use the same
tokenizer as the LLaMA models (Touvron et al., 2023a;b).
All models are trained with a 4096-token context window.
In the causal segment routing strategy, we set the length of
each segment to be S = 256.

Training details We employ the AdamW
optimizer (Loshchilov & Hutter, 2017) with β1 = 0.9 and
β2 = 0.95 and use a learning rate of 2e − 4 with a cosine
learning rate scheduler. All 0.3B models are trained using
32 A100 GPUs with a batch size of 1 million tokens; 1.5
models are trained using 64 GPUs with a batch size of 1
million tokens.

Warmup and initialization At the beginning of training,
we train a parameter-matched dense model and duplicate

1Similar to training, we use the first segment to compute the
routing weights for itself.

2In Appendix D, we additionally conduct experiments on a 7B
dense model and a 7B/4E MoE model without using similarity-
based data batching. Due to the limited computing resources, we
are not able to train 7B models on the batched dataset.

the FFN layers as initialization of the MoE model. In
our experiments, we use the first 5% training steps as the
warmup to initialize the MoE weights. We find that without
warmup training, there may be more experts under-utilized
(see Appendix E.2 for an ablation study). We also apply a
linear warmup to the learning rate scheduler for the first 5%
training steps.

Training datasets We follow Shi et al. (2023) and use the
Commoncrawl dataset (Wenzek et al., 2019). We randomly
sample a subset of Commoncrawl, which consists of 150
billion tokens. We apply the similarity-based data batching
method on this subset to construct all training instances.

Evaluation datasets We evaluate the pre-trained models
on language modeling tasks. We measure the perplexity
of trained models on held-out evaluation datasets sampled
from arXiv, Books Corpora, Wikipedia, C4 (Raffel et al.,
2020), and Python code (a Python subset of Github). Each
evaluation dataset contains 1K samples, each of which
consists of 2048 tokens.

We also evaluate models in downstream tasks with in-
context learning (Brown et al., 2020), including common
sense reasoning: BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers
et al., 2019), WinoGrand (Sakaguchi et al., 2021); reading
comprehension: RACE (Lai et al., 2017), ARC (Clark et al.,
2018)); closed-book QA: Natural Questions (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017); and text
classification: AGNews (Zhang et al., 2015), SST-2 (Socher
et al., 2013), Amazon and Yelp (Zhang et al., 2015),
FEVER (Thorne et al., 2018), MRPC (Dolan & Brockett,
2005).

4.2. Main Results

Training efficiency and convergence Figure 2 (left)
shows the training loss curves of the dense model and our
MoE models with different model sizes. First, we find that
with the same amount of training tokens, our models clearly
achieve better training loss compared to the dense model
baseline. For the 0.3B and 1.5B models, our models with
32 experts achieve the same level of loss with fewer than
half of the training tokens. This indicates that our approach
achieves much better performance with the same training
FLOPs (see analysis of additional FLOPs from MoE layers
in Appendix A). We also observe that when using more
experts, we are able to gain more improvement.

Language modeling We evaluate trained models on
language modeling evaluation sets. As shown in
Figure 2 (right), our MoE models outperform the dense
baseline in all domains, significantly reducing perplexity.
For example, our 0.3B/32E model achieves a relative

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2024

0 50 100 150
2.1

2.2

2.3

2.4

2.5

2.6

Lo
g

P
er

pl
ex

ity

0.3B (dense)
0.3B/8E
0.3B/16E
0.3B/32E

0 50 100 150
1.9

2.0

2.1

2.2

2.3

2.4
1.5B (dense)
1.5B/8E
1.5B/16E
1.5B/32E

Billion of tokens

Model arXiv Books Wiki C4 Python

0.3B 8.4 18.0 10.3 13.8 15.2
0.3B/8E 7.4 16.0 9.2 13.3 12.5
0.3B/16E 7.2 15.7 9.1 13.1 12.2
0.3B/32E 7.2 15.5 8.9 13.0 11.7

1.5B 6.6 13.6 7.8 10.7 10.4
1.5B/8E 6.2 12.8 7.6 10.6 10.1
1.5B/16E 6.0 12.4 7.1 10.6 8.9
1.5B/32E 5.8 12.3 7.1 10.4 8.7

Figure 2: Left: training curves (log perplexity) of models with different sizes and experts. Right: Perplexity of trained models on different
evaluation sets (arXiv, Books, Wikipedia, C4, and Python).

improvement of 13.9% on Books compared to the 0.3B
dense model. We observe that the improvement is especially
large in test domains that are markedly different from
the domains of the training dataset (e.g. Python). We
consider this as a strong indication of expert specialization
in specific domains (we further study expert specialization
in Section 5.4).

Downstream tasks Table 1 shows the model performance
on downstream tasks. We observe significant performance
across all tasks. For example, our 0.3B/32E model achieves
an average performance improvement of +3.7% in common
sense reasoning, +3.3% in reading comprehension, +1.5%
in reading comprehension, and +11.1% in text classification.
This suggests that our MoE models are better at memorizing
knowledge, understanding and reasoning over the context,
and classifying sentences based on different criteria.

5. Analysis and Ablation Studies
In this section, we conduct ablation studies and analysis to
understand the essence of each component of our approach.

5.1. Importance of Causal Segment Routing

We study the importance of our causal segment routing
strategy. As during inference, we first encode the entire
input prompt and compute the routing weights at each MoE
layer. A natural alternative strategy for training routers is
to regard a prefix of the training instance as the “prompt”
and route the entire training instance using the prefix.
Specifically, we implement a prefix routing strategy where
we use the first segment as the prefix prompt. Similarly,
we apply a stop-gradient operation when processing the
first segment on the merged FFNs. As shown in Figure 3,
although we use similarity-based data batching to construct
training instances, only using a prefix for routing leads to
much worse performance compared to using causal segment
routing. These results suggest the importance of using every

segment to provide strong training signals for routers.

0 50 100 150
Billion of tokens

2.1

2.2

2.3

2.4

2.5

2.6

Lo
g

P
er

pl
ex

ity

0.3B (dense)
0.3B/8E (causal segment routing)
0.3B/8E (prefix routing)

Figure 3: Training curves of using different routing strategies.
We investigate the importance of using causal segment routing.
We compare with prefix routing, a straightforward segment-level
routing strategy that uses the prefix of the input (the first segment).

5.2. Importance of Similarity-based Data Batching

To investigate the importance of using similarity-based
data batching, we compare the improvement we gain from
training MoE models with and without the similarity-based
batching method. First, Figure 4 (a) shows the training
loss of the dense models and MoE models with eight
experts when using the similarity batched data (sim batch)
and the original randomly batched data (rand batch). We
find that on both training sets, our MoE models clearly
outperform the dense models, achieving a lower training
loss. Furthermore, we compare the loss improvement (i.e.,
the difference between the loss of dense models and the loss
of MoE models) of the MoE models in Figure 4 (b). We
observe that with the similarity-based batching method, the
loss improvement is much larger, and it is further enlarged
when training with more update steps. These results clearly
suggest that it is crucial to apply similarity-based batching
in order to train effective soft-routing MoE models.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2024

Table 1: We compare the MoE models trained with SOAP with the parameter-matched dense models on downstream tasks, including
commonsense reasoning, reading comprehension, closed-book QA, and text classification.

Commonsense Reasoning Reading Comprehension

Model PIQA SIQA BoolQ HellaSwag WinoGrande RACE-m RACE-h ARC-e ARC-c

0.3B 65.8 42.7 44.6 34.6 51.2 41.7 30.9 51.5 21.3
0.3B/8E 67.5 41.2 41.2 34.8 54.4 43.1 31.4 52.4 22.1
0.3B/16E 67.2 44.1 56.6 34.9 54.1 43.9 31.1 54.8 24.9
0.3B/32E 68.2 43.0 58.0 34.7 53.4 42.7 32.0 57.4 26.3

1.5B 71.2 45.0 54.0 43.9 60.9 50.1 36.7 65.0 31.0
1.5B/8E 72.1 45.2 62.0 43.6 63.7 51.2 36.5 66.3 32.5
1.5B/16E 71.3 45.0 56.0 43.7 61.5 51.7 37.3 66.3 32.7
1.5B/32E 72.1 47.1 59.9 43.8 61.9 51.5 32.4 66.7 32.7

Closed-book QA Text Classification Avg
Model NQ TQA AGNews Amazon SST-2 Yelp Fever MRPC

0.3B 4.7 8.8 30.3 53.6 54.6 66.0 47.6 62.0 41.8
0.3B/8E 5.3 9.0 38.4 52.3 54.6 62.6 56.6 59.0 42.7
0.3B/16E 6.0 10.2 36.3 75.6 53.3 64.0 57.0 65.0 45.8
0.3B/32E 5.3 10.2 47.3 64.0 55.3 73.3 55.7 56.0 46.0

1.5B 7.6 23.8 64.0 65.3 80.0 58.6 59.0 66.7 51.9
1.5B/8E 7.3 24.2 65.0 94.0 80.0 88.3 57.0 64.0 56.1
1.5B/16E 7.3 25.6 61.6 78.3 84.6 93.6 57.3 63.6 55.1
1.5B/32E 7.0 25.4 62.3 94.7 85.0 95.3 56.3 66.7 56.5

5.3. Comparison with Existing MoE Models

We compare our approach with a state-of-the-art MoE
method Expert Choice (EC) (Zhou et al., 2022), where each
expert selects top-k inputs according to the routing weights
to ensure the balanced load during training. We consider
two variants of the EC MoE models. In both variants, we
set the capacity factor of experts to 1 to ensure that the
amount of computation is roughly the same as our MoE
models. First, we follow our segment routing strategy and
train a sparse MoE model with the EC method. During
training, each expert selects the top segments, and all tokens
in this segment are fed into this expert. This variant is
to investigate the improvement that we can get by merely
using a fully differentiable soft-routing MoE with the same
routing strategy. Second, we consider the original setting of
EC models where token-level routing is used. Here, the goal
is to have an end-to-end comparison to the existing SoTA
MoE models with the same amount of training computation.

The training loss curves are shown in Figure 5. First,
we observe that our approach (blue curve) significantly
outperforms segment-level EC (orange curve) with the
same routing setting. This suggests that with the same
routing strategy, using a fully differentiable architecture is
more effective than a sparse MoE, thanks to the end-to-end
gradient back-propagation. On the other hand, the token-
level EC model leads to a loss curve similar to that of our
model. This indicates that although our models make a
coarser-grained routing decision (segment-level), they are

Table 2: Perplexity of our trained MoE model and EC models on
evaluation sets. We instantiate EC methods with our segment-level
routing and the original token-level routing.

Model arXiv Books Wiki C4 Python

0.3B/8E (SOAP) 7.4 16.0 9.2 13.3 12.5
0.3B/8E (EC, segment-level) 7.9 17.6 10.5 14.1 20.8
0.3B/8E (EC, token-level) 7.5 17.0 9.2 12.8 23.7

able to achieve the same level of performance compared to
token-level MoE models.

Table 2 shows the perplexity of the models on held-out
evaluation sets. We find that the token-level EC model
performs better than our model on the C4 evaluation data,
which is likely on the most similar distribution to the training
set (Commoncrawl); on arXiv, Books, and Wikipedia,
EC performs similarly or slightly worse than our model.
Surprisingly, on the Python evaluation set, the token-level
EC model performs particularly badly, achieving even worse
perplexity than the segment-level EC model. We think this
suggests that segment-level routing models are particularly
better at learning domain-level specialization, as segment-
level global features are captured by routing networks. The
better domain-level expert specialization makes the model
achieve good performance on out-of-domain evaluation data
(we assume that there is only a very small part of Python
code in Commoncrawl). We further investigate the expert
specialization in Section 5.4

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2024

2.1

2.2

2.3

2.4

2.5

2.6

Lo
g

P
er

pl
ex

ity
0.3B (sim batch)
0.3B/8E (sim batch)
0.3B (rand batch)
0.3B/8E (rand batch)

0 50 100 150
0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

 Im
pr

ov
em

en
t (

M
oE

 o
ve

r D
en

se
)

sim batch
rand batch

Billion of tokens

Figure 4: We study the effects of using the similarity-based data
batching method. Top: we show the training curves of the 0.3B
dense model and the 0.3B/8E model with similarity-based data
batching (sim batch) or the standard random batching (rand batch).
Bottom: we show the training loss improvement of the MoE model
over the dense counterpart in different scenarios. Using similarity-
based batching leads a much larger loss improvement.

5.4. Expert Utilization and Specialization

Utilization: How many experts are actively utilized?
One potential issue of training MoE models is the models
may collapse to dense models because most experts are
under-utilized (e.g., some experts have never been activated).
Here, we investigate the expert utilization of our soft-routing
MoE models. We define an expert that is activated for
a given input if the routing weight is larger than E

2 . In
Figure 6, we plot the number of experts that are activated at
least once among 10 training steps when training 1.5B MoE
models (with 48 layers; therefore, the 1.5B/8E, 1.5B/16E,
1.5B/32E models have 384, 768, 1536 experts in total,
respectively). We see that after the warmup phase at the
beginning, the expert utilization quickly increases. 1.5B/8E
and 1.5B/16E models have quickly utilized most of the
experts; while the expert utilization of the 1.5B/32E model
continues to increase until the end of the training. This
indicates that our approach is able to prevent the MoE
models from collapse to dense models and achieves high
expert utilization. However, when training with a large
number of experts, training the model to activate all experts
is more challenging.

Specialization: What do experts learn? In order to study
the expert specialization, we investigate the averaged routing
weights at different layers of the 0.3B/8E model, on different

0 50 100 150
Billion of tokens

2.1

2.2

2.3

2.4

2.5

2.6

Lo
g

P
er

pl
ex

ity

0.3B/8E (SoAP)
0.3B/8E (EC, segment-level)
0.3B/8E (EC, token-level)

Figure 5: Comparison with the state-of-the-art MoE training
technique Expert Choice (EC). We implement two variants of EC:
one trained with the original token-level routing strategy, where
each expert selects top tokens; the other trained with the segment-
level routing strategy, where each expert selects top segments. For
both EC models, we use the capacity factor of 1 with the same
amount of FLOPs as our training method for the fair comparison.

0 50 100 150
Billion of tokens

300

600

900

E

xp
er

t A
ct

iv
at

ed

1.5B/8E
1.5B/16E
1.5B/32E

Figure 6: We show how many experts are actively utilized every
10 training steps during training. We define an expert is activated
if the weight is larger than E

2
, where E denotes the number of

experts at each MoE layer.

domains (Books, arXiv, Python, and Wikipedia). Figure 7
shows the routing weights at layer 0, 11, and 23 (the first,
middle, and last layer) of the 0.3B/8E model. First, we find
that there exists clear domain-level expert specialization in
our trained MoE models, even though no additional domain-
level supervision is used during training. For instance,
expert 7 at layer 11 is specialized to process inputs in
the arXiv domain. We also observe that routing weights
on arXiv and Python code are more similar compared
to Books and Wikipedia, likely because LaTex code and
Python code are dissimilar to natural language. Second,
experts at the middle or high layers are more specialized in
specific domains, while the routing weights at lower layers
are similar and flat across domains.

It is worth noting that our learned experts behave differently
from those of prior token-level MoE models, where shallow
token-level specialization is observed. For example, some
experts are specialized for a specific type of word (e.g.,

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2024

0.0

0.1

0.2

0.3

0.4
Layer 0

0.0

0.1

0.2

0.3

0.4
Layer 11

0 1 2 3 4 5 6 7
Expert ID

0.0

0.1

0.2

0.3

0.4
Layer 23Av

er
ag

ed
 W

ei
gh

ts

Books arXiv Python Wikipedia

Figure 7: Averaged routing weights at layer {0, 11, 23} of
the 0.3B/8E model on different domains (Books, arXiv, Python,
Wikipedia). We observe that the experts in our MoE models learn
domain-level specialization, especially at middle and higher layers.

punctuations, articles), and few deep semantic features are
captured by the learned routers (Jiang et al., 2024; Lewis
et al., 2021; Zoph et al., 2022; Shazeer et al., 2017). Our
models learn domain-level specialization. We think this
is due to the segment-level routing strategy we use during
training, which enables the routers to capture global features
beyond token level. This suggests that segment-/sentence-
level routing strategies and token-level routing strategies
capture complementary features, opening up opportunities
to combine them to build even stronger models.

5.5. More Analysis

In Appendix E, we further show that (1) during inference of
downstream tasks, routing the entire input prompt once or
routing each segment does not make substantial differences
on the tasks we evaluate; (2) warmup training is crucial
to achieve high expert utilization, especially when training
MoE models with a large number of experts.

6. Related Work
Mixture of Experts Sparsely gated MoE models (Shazeer
et al., 2017) have been proposed to demonstrate the potential
of massively scaling up model sizes. GShard (Lepikhin
et al., 2020) adapts the sparse MoE architecture into
Transformer models and achieves strong results on machine
translation. Recent work has extended it to general language

models (Fedus et al., 2022; Zoph et al., 2022; Jiang et al.,
2024; Dai et al., 2024; Zhou et al., 2022; Du et al., 2022;
Artetxe et al., 2022). Traditional MoE models are trained
to route given inputs to one or a few specialized expert
modules, which introduces a non-differentiable, discrete
decision-learning problem. These existing models are
trained with the top-1 or top-2 routing strategy on a carefully
designed load balancing objective (Lepikhin et al., 2020;
Fedus et al., 2022; Zoph et al., 2022), or employ complicated
assignment algorithms to distribute inputs (Lewis et al.,
2021; Roller et al., 2021; Zhou et al., 2022). Training
MoE models has been shown to be difficult, facing the
issues of training instability, expert under-specialization,
poor training efficiency (Zoph et al., 2022).

Our approach enables end-to-end gradient back-
propagation by employing fully differentiable MoE
architectures (Muqeeth et al., 2023; Puigcerver et al., 2023).
Soft MoE models (Puigcerver et al., 2023) softly merge
visual tokens that are processed by an expert in computer
vision tasks. SMEAR (Muqeeth et al., 2023) proposes
softly merging experts by taking a weighted average on the
parameter space. Our MoE models are built on the SMEAR
architecture with all FFN layers replaced by MoE layers.
However, existing differentiable MoE models only focus on
an encoder architecture, while our proposed SOAP method
enables training autoregressive soft-routing MoE models.

Similarity-based data batching There exists research
that applies a similar data batching method during training.
In-context pre-training (Shi et al., 2023) groups relevant
documents together to encourage language models to
leverage long-range contexts and improve the results of in-
context learning and retrieval augmentation. TRIME (Zhong
et al., 2022) batch documents with high lexical similarity
to collect more positive pairs in a contrastive learning
framework to provide stronger training signals. Although
sharing the same idea, the goal of our data batching method
is to avoid routing irrelevant documents together, which may
hurt the expert specialization.

7. Conclusion
In this paper, we propose SOAP, a training method to train
autoregressive MoE language models with soft routing. Our
extensive experiments demonstrate that our MoE models
significantly outperform baseline models on language
modeling tasks and downstream applications. We also
observe that trained experts are highly specialized and
capable of capturing domain-level information. Future
research includes further scaling up our MoE models,
combine=ing token-level routing and segment-level routing,
and developing efficient decoding methods for soft-routing
MoE models.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2024

Impact Statements
This paper presents a new approach for building large
language models. We would like to note that, similar to
existing language models, the language models trained
with our approach may have the same potential societal
consequences. For example, language models can produce
factually inaccurate outputs (e.g., Min et al. (2023)), facing
the risk of spreading misinformation; malicious users
can extract training data that is used to train language
models (Carlini et al., 2021), causing privacy and license
problems. We acknowledge these potential negative
consequences and caution those who use our approach to
build powerful language models.

References
Artetxe, M., Bhosale, S., Goyal, N., Mihaylov, T., Ott, M.,

Shleifer, S., Lin, X. V., Du, J., Iyer, S., Pasunuru, R.,
Anantharaman, G., Li, X., Chen, S., Akin, H., Baines, M.,
Martin, L., Zhou, X., Koura, P. S., O’Horo, B., Wang, J.,
Zettlemoyer, L., Diab, M., Kozareva, Z., and Stoyanov,
V. Efficient large scale language modeling with mixtures
of experts. In Goldberg, Y., Kozareva, Z., and Zhang, Y.
(eds.), Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 11699–
11732, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.emnlp-main.804. URL https://
aclanthology.org/2022.emnlp-main.804.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa:
Reasoning about physical commonsense in natural
language. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 7432–7439, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Dai, D., Deng, C., Zhao, C., Xu, R. X., Gao, H., Chen,
D., Li, J., Zeng, W., Yu, X., Wu, Y., Xie, Z., Li,
Y. K., Huang, P., Luo, F., Ruan, C., Sui, Z., and
Liang, W. Deepseekmoe: Towards ultimate expert
specialization in mixture-of-experts language models.
CoRR, abs/2401.06066, 2024. URL https://arxiv.
org/abs/2401.06066.

Dolan, W. B. and Brockett, C. Automatically constructing
a corpus of sentential paraphrases. In Proceedings
of the Third International Workshop on Paraphrasing
(IWP2005), 2005. URL https://aclanthology.
org/I05-5002.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D.,
Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al.
Glam: Efficient scaling of language models with mixture-
of-experts. In International Conference on Machine
Learning, pp. 5547–5569. PMLR, 2022.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and
efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski,
P., Joulin, A., and Grave, E. Unsupervised dense
information retrieval with contrastive learning, 2021.
URL https://arxiv.org/abs/2112.09118.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Johnson, J., Douze, M., and Jégou, H. Billion-scale
similarity search with gpus. IEEE Transactions on Big
Data, 7(3):535–547, 2019.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L.
Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Devlin,
J., Lee, K., et al. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–466,
2019.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E.
Race: Large-scale reading comprehension dataset from
examinations. arXiv preprint arXiv:1704.04683, 2017.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

9

https://aclanthology.org/2022.emnlp-main.804
https://aclanthology.org/2022.emnlp-main.804
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://arxiv.org/abs/2112.09118

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2024

Lewis, M., Bhosale, S., Dettmers, T., Goyal, N., and
Zettlemoyer, L. Base layers: Simplifying training of
large, sparse models. In International Conference on
Machine Learning, pp. 6265–6274. PMLR, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

Min, S., Krishna, K., Lyu, X., Lewis, M., Yih, W.-t.,
Koh, P., Iyyer, M., Zettlemoyer, L., and Hajishirzi, H.
FActScore: Fine-grained atomic evaluation of factual
precision in long form text generation. In Bouamor, H.,
Pino, J., and Bali, K. (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, pp. 12076–12100, Singapore, December
2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.741. URL https://
aclanthology.org/2023.emnlp-main.741.

Muqeeth, M., Liu, H., and Raffel, C. Soft merging of experts
with adaptive routing. arXiv preprint arXiv:2306.03745,
2023.

Puigcerver, J., Riquelme, C., Mustafa, B., and Houlsby, N.
From sparse to soft mixtures of experts. arXiv preprint
arXiv:2308.00951, 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Roller, S., Sukhbaatar, S., Weston, J., et al. Hash layers
for large sparse models. Advances in Neural Information
Processing Systems, 34:17555–17566, 2021.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Sap, M., Rashkin, H., Chen, D., LeBras, R., and Choi,
Y. Socialiqa: Commonsense reasoning about social
interactions. arXiv preprint arXiv:1904.09728, 2019.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Shi, W., Min, S., Lomeli, M., Zhou, C., Li, M., Lin,
V., Smith, N. A., Zettlemoyer, L., Yih, S., and Lewis,
M. In-context pretraining: Language modeling beyond
document boundaries. arXiv preprint arXiv:2310.10638,
2023.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal,
A. Fever: a large-scale dataset for fact extraction and
verification. arXiv preprint arXiv:1803.05355, 2018.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971,
2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Wenzek, G., Lachaux, M.-A., Conneau, A., Chaudhary, V.,
Guzmán, F., Joulin, A., and Grave, E. Ccnet: Extracting
high quality monolingual datasets from web crawl data.
arXiv preprint arXiv:1911.00359, 2019.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, X., Zhao, J., and LeCun, Y. Character-level
convolutional networks for text classification. Advances
in neural information processing systems, 28, 2015.

Zhong, Z., Lei, T., and Chen, D. Training language
models with memory augmentation. In Goldberg, Y.,
Kozareva, Z., and Zhang, Y. (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 5657–5673, Abu Dhabi,
United Arab Emirates, December 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.382. URL https://aclanthology.
org/2022.emnlp-main.382.

Zhou, Y., Lei, T., Liu, H., Du, N., Huang, Y., Zhao, V.,
Dai, A. M., Le, Q. V., Laudon, J., et al. Mixture-of-
experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

Zoph, B., Bello, I., Kumar, S., Du, N., Huang, Y., Dean,
J., Shazeer, N., and Fedus, W. St-moe: Designing stable
and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

10

https://aclanthology.org/2023.emnlp-main.741
https://aclanthology.org/2023.emnlp-main.741
https://aclanthology.org/2022.emnlp-main.382
https://aclanthology.org/2022.emnlp-main.382

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2024

A. Computational Overhead of Routing and
Merging

Here we investigate the computational overhead of our
causal segment routing strategy. We consider an MoE
layer and an input tensor x consisting of L tokens and
d dimensions: x : L × d. We assume that the model
uses SwiGLU as the activation function in FFNs and it up-
projects the input x to d′-dimensional activations in FFNs.
In this case, processing the input on an FFN requires roughly
6×L×d×d′ FLOPs (there are two up projections and one
down projections in SwiGLU-based FFNs). The overhead of
soft-routing MoE comes mainly from the merging operation.
Suppose that there are E experts and that the model makes a
routing decision for every segment of S tokens (equivalently,
there are L/S routing decisions). Each merging operation
on E experts takes 6 × E × d × d′ FLOPs (we compute
three merged matrices). Therefore, the total overhead will
be L

S ×6×E×d×d′ FLOPs. This indicates that compared
to a dense FFN layer, an MoE layer with E experts requires
E
S more FLOPs. In our experiments, we set S = 256;
this suggests that using E = 8 experts introduces 3.1%
more computations and using E = 32 experts introduces
12.5% more computations at the FFN/MoE layers. It is
worth noting that the computations from FFN layers are
only a subset of the full model computations, so 3.1% is an
overhead upperbound when measuring on full models. In
our experiments, our most straightforward implementation
leads to a 15% or 20% slowdown of training efficiency
when using 8 or 32 experts. We leave a better-optimized
implementation for future work.

B. Details of Similarity-based Data Batching
We adapt the pipeline of in-context pre-training (Shi et al.,
2023) in our approach. Given a set of documents D, for
each document d ∈ D, we first use Contriever (Izacard
et al., 2021) to retrieve top-k most similar documents N(d).
The similarity between the document di and dj is defined
as the cosine similarity of their Contriever embeddings,
i.e., sim(di, dj) = cos(C(di), C(dj)), where C denotes
the Contriever encoder model. We implement an efficient
approximate nearest-neighbors search based on the FAISS
library (Johnson et al., 2019). Then, we sort all the
documents according to the similarity and construct training
instances by batch consecutive documents. We use the
same greedy algorithm as Shi et al. (2023). We start from
a single document and repeatedly add the document that
has the highest similarity value and has not been added to
the list; we restart the process with a new document if all
documents that are connected to the last document of the
list are selected. We repeat this process until there are no
documents left.

Table 3: Model architectures and sizes used in our experiments.
For MoE models, we replace each FFN layers with a MoE layer.
kE (e.g., “16E” in “0.3B/16E”) represents the architecture in
which each FFN layer is replaced with a MoE layer of k experts.
N : number of layers; D: hidden dimension of the model; nhead:
number of attention heads.

Model nparams N D nhead

0.3B 0.3B

24 1024 160.3B/8E 1.8B
0.3B/16E 3.5B
0.3B/32E 6.8B

1.5B 1.5B

48 1536 241.5B/8E 7.8B
1.5B/16E 15.0B
1.5B/32E 29.5B

C. Model Configurations
In our experiments, we employ SOAP to train decoder-
only models which consists of effective parameters of 0.3B
and 1.5B. For each FFN layer in the Transformer model,
we replace it with MoE layers with E (E ∈ {8, 16, 32})
experts with exactly the same architecture. Table 3 shows
the configurations of model architectures.

D. Experiments on 7B models
Experimental Setups We conduct experiments on a 7B
architecture. Table 4 shows the configuration of the model
architectures. We train a dense 7B model and a 7B/4E MoE
model. For the 7B models, we follow LLaMA2 (Touvron
et al., 2023b) and use a combination of several corpora as the
training set. We down-sample the full training set to a subset
of 200B tokens for 7B models. Due to limited resources,
we only conduct experiments on randomly batched training
data for 7B models and do not apply the similarity-based
batching method.

Table 4: Model architectures and sizes used in our 7B experiments.
For MoE models, we replace each FFN layers with a MoE layer.
N : number of layers; D: hidden dimension of the model; nhead:
number of attention heads.

Model nparams N D nhead

7B 7B 32 4096 327B/4E 19.7B

Language Modeling Results We show the training loss
curves in Figure 8 and the perplexity on held-out evaluation
sets in Table 6. We find that compared to the 0.3B and
1.5B models (see Section 4), the improvement of the 7B/4E
model is less significant. We think it is because (1) the
similarity-based batching method is not applied in this case,

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2024

Table 5: Downstream performance of using different inference
methods. We study two routing strategy for inference. prompt:
we make the routing decision once on the entire input prompt;
segment: we re-route and get new merged FFNs every segment.

Model PIQA SIQA BoolQ HellaSwag

1.5B/8E (prompt) 72.1 45.2 62.0 43.6
1.5B/8E (segment) 72.1 45.6 60.2 43.9

1.5B/16E (prompt) 71.3 45.0 56.0 43.7
1.5B/16E (segment) 72.9 45.4 55.2 43.6

Model Wino NQ TQA Avg

1.5B/8E (prompt) 63.7 7.3 24.2 45.4
1.5B/8E (segment) 61.8 7.3 24.4 45.1

1.5B/16E (prompt) 61.5 7.3 25.6 44.4
1.5B/16E (segment) 62.4 7.6 25.5 44.7

making the experts under-utilized; (2) we only use four
experts in the MoE model. We leave the experiments with
the similarity-based batching method on MoE models with
more experts as future work.

0 50 100 150 200
1.7

1.8

1.9

2.0

2.1

2.2

Lo
g

P
er

pl
ex

ity

7B
7B/4E

Billion of tokens

Figure 8: Training curves (log perplexity) of the 7B dense model
and the 7B/4E MoE model. Note that when training the 7B/4E
model, we do not apply the similarity-based batching method.

Table 6: Perplexity of trained models on different evaluation
sets (arXiv, Books, Wikipedia, C4, and Python). Note that when
training the 7B/4E model, we do not apply the similarity-based
batching method.

Model arXiv Books Wiki C4 Python

7B 2.3 9.1 5.9 8.0 2.3
7B/4E 2.2 8.7 5.7 7.7 2.2

Performance on Downstream Tasks Table 7 shows the
performance of the models on downstream tasks. We find
that although the similarity-based batching method is not
used when training the 7B/4E model, it still achieves clearly
better results on various tasks compared to the dense 7B
model. This further suggests the effectiveness of our causal
routing strategy.

E. More Analysis and Ablation Studies
E.1. Inference Methods

During inference of downstream tasks, by default, we take
the task input prompt as the input of the routers in each layer
and make the routing decision once. This inference method
enables the decoding process to be simple and achieves low
latency, since after encoding and routing the input, we do
not need to use the routers again – the rest generation can be
run in a (merged) dense model. As such an inference method
introduces a train-test discrepancy, we study the method that
routes every segment as we do during training. As shown
in Table 5, routing the input once or routing each segment
does not make substantial differences in the downstream
tasks we evaluate. Due to simplicity and efficiency, we use
the entire prompt as the routing input and perform routing
only once.

1.9

2.0

2.1

2.2

2.3

2.4

Lo
g

P
er

pl
ex

ity

1.5B/32E (5% warmup)
1.5B/32E (no warmup)

0 50 100 150
0

300

600

900

E

xp
er

ts
 A

ct
iv

at
ed

1.5B/32E (5% warmup)
1.5B/32E (no warmup)

Billion of tokens

Figure 9: Training curves and expert utilization of employing a
warmup phrase or not. We find without a warmup phrase, training
leads to a worse MoE model (top) and worse expert utilization
(bottom).

E.2. Warmup Training

At the beginning of training (i.e., the first 5% training steps),
we train a dense LM with the same configuration before
training the MoE model. We initialize the MoE layers by
duplicating the FFN layers of the warmup trained model.
We find that this warmup phase is crucial for achieving high
expert utilization especially when there is a large number
of experts. Figure 9 visualizes the training loss curves and
expert utilization of the 1.5B/32E model (with or without
warmup training). As shown in the figure, without the warm-
up phrase, the model achieves worse performance and much

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2024

Table 7: We compare the 7B/4E MoE models trained with our routing strategy (without using the similarity-based batching method) with
the parameter-matched dense models on downstream tasks, including commonsense reasoning, reading comprehension, closed-book QA,
and text classification.

Commonsense Reasoning Reading Comprehension

Model PIQA SIQA BoolQ HellaSwag WinoGrande RACE-m RACE-h ARC-e ARC-c

7B 76.9 50.2 65.2 52.6 66.2 55.3 40.5 73.0 38.5
7B/4E 77.7 50.1 67.6 54.8 67.3 57.0 41.3 73.5 39.6

Closed-book QA Text Classification Avg
Model NQ TQA AGNews Amazon SST-2 Yelp Fever MRPC

7B 17.3 42.5 80.6 94.3 92.7 98.3 53.7 67.0 62.5
7B/4E 18.8 44.5 81.7 95.7 93.1 96.7 57.7 69.7 63.9

fewer experts are utilized.

13

